N-Oxides and Related Compounds. Part L. ${ }^{1}$ Reactions of Pyridinium and Sulphonium Ylides with Pyrylium Salts

By Alan R. Katritzky,* S. Q. Abbas Rizvi, and Jerzy W. Suwinski, School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ
2.4.6-Triphenylpyrylium perchlorate reacts with pyridinium acylylides to form arylpyridinium perchlorates by a ring-opening-ring-closure mechanism, and with sulphonium ylides to afford furans. Spectral data are discussed.

Numerous reactions of pyrylium salts with aminocompounds yield pyridine derivatives. ${ }^{2-6}$ Several types of active methylene compounds similarly afford benzenes: thus, nitromethane yields nitrobenzenes. ${ }^{7} \beta$ -oxo-esters give benzoate esters, ${ }^{8}$ acetylacetone gives acetophenones, ${ }^{8}$ and cyanoacetic ester benzonitriles. ${ }^{8}$ An analogous reaction with benzyl-lithium or benzylmagnesium chloride affords a biphenyl. ${ }^{8,9}$ In all the foregoing cases the reaction can be represented by $(1) \longrightarrow(2)$ in Scheme 1. However, reactions with

(3)

(4)

Scheme 1
malonic ester ${ }^{\mathbf{1 0}}$ and malononitrile can take a different course $[(1) \longrightarrow(3)$ or (4)] in which two carbon atoms from the nucleophile are incorporated into the new ring.

Only one previous disclosure ${ }^{11}$ was found concerning reactions of pyrylium salts with ylides; we now report our results with pyridinium, sulphonium, and phosphonium ylides.

Reactions with Pyridinium Ylides.-2,4,6-Triphenylpyrylium perchlorate (5) reacted with the pyridinium acylylides $(6 \mathrm{a}-\mathrm{c})$ to give the arylpyridinium perchlorates $(7 a-c)$. The products are considered to be formed via intermediates of types (8) and (9), and were identified on the basis of analysis and spectral data. Particularly significant were the one-proton singlets in the n.m.r.

[^0]spectra at $\delta 7.91 \pm 0.02$ for the 5 -protons of the phenyl groups and the benzoyl carbonyl i.r. absorption at $1670 \pm 2 \mathrm{~cm}^{-1}$. In the original ylides $(6 a-c), v(\mathrm{C}=\mathrm{O})$ varied in the range $1710-1695 \mathrm{~cm}^{-1}$; the invariability of the corresponding absorption in the products indicates that the acyl group is benzoyl derived from the pyrylium ring rather than the original (substituted) aroyl group of the acylylide.

Reactions with Sulphonium Ylides.-2,4,6-Triphenylpyrylium perchlorate (5) reacted with the sulphonium ylides $(10 \mathrm{a}-\mathrm{c})$ to yield the furans $(13 \mathrm{a}-\mathrm{c})$ (Table 1$)$. The reaction is considered to involve the intermediates (11) and (12), and the products are assigned the furan formulae (14) rather than the alternative oxepin structures (13) on the basis of a single crystal X-ray study ${ }^{12}$ of compound (14c). \dagger The formation of the furan ring from (12) was unexpected, and the precise details of the mechanism are not known. The furans (14a-c) show broad carbonyl absorption at ca. $1650 \mathrm{~cm}^{-1}(\mathrm{KBr}$ or

[^1]$\left.\mathrm{CHCl}_{3}\right)$; of. chalcone ${ }^{13} v(\mathrm{C}=\mathrm{O}) 1669 \mathrm{~cm}^{-1}$ and $3-(2-$ furyl)acrylophenone ${ }^{13} 1669 \mathrm{~cm}^{-1}$. In the polysubstituted systems it is difficult to distinguish the characteristic furan ring stretching modes, ${ }^{14}$ but strong absorptions are observed near 1550 and $1200 \mathrm{~cm}^{-1}$.

Scheme 3

The general mass-spectral fragmentation pattern for the furans is outlined in Scheme 4. The M and $M+1$ ions were observed in all three cases and the ion at m / e
${ }^{13}$ S. V. Tsukerman, V. D. Orlov, V. M. Nikitchenko, Yu. S. Rozum, V. F. Lavrushin, and Yu. K. Yur'ev, Theor. and Exp. Chem., 1966, 2, 303 (Teor. i eksp. Khim., 1966, 2, 399).
14 A. R. Katritzky and J. M. Lagowski, J. Chem. Soc., 1959, 657.

321 was the base peak. Unfortunately, the mass spectral evidence does not provide conclusive proof for either

the furan or the oxepin structure, since the loss of COAr from structure (14) would give ion (A) which could rearrange to (B) (Scheme 5). No ions were observed corresponding to 2,4 -diphenylfuran or to a pyrylium salt. The latter was an expected rearrangement product from either structure. The mass spectra contain M^{2+} peaks for the parent ions and metastable ions corresponding to the loss of -COAr from the oxepin molecule.
N.m.r. spectra are complicated by the large number of aromatic protons. A one-proton singlet at 6.80 ± 0.02 is due either to the styryl proton ($-\mathrm{CPh}=\mathrm{CH} \cdot \mathrm{COAr}$) or the 4 -proton of the furan ring. Attempts to identify the other expected singlet by use of lanthanide shift reagents failed.
U.v. measurements (solvent 95% ethanol; Table 2) show absorption maxima analogous to those of the related substituted acrylophenones.
Reaction with a Phosphonium Ylide.-2,4,6-Triphenylpyrylium perchlorate (5) reacted with triphenylphosphonium phenacylide to give the anhydro-base (15). This diketone probably arises from attack of moisture on the triphenylphosphonium intermediate analogous to (12). A similar intermediate was isolated by Märkl ${ }^{11}$ from the corresponding methoxycarbonyl ylide.

(15)

EXPERIMENTAL
Methylphenacylphenylsulphonium Perchlorate.-Methyl phenyl sulphide ($6.2 \mathrm{~g}, 0.05 \mathrm{~mol}$), dichloroethane (50 ml), phenacyl bromide ($8.95 \mathrm{~g}, 0.05 \mathrm{~mol}$), and silver perch-lorate-acetonitrile complex ($18.6 \mathrm{~g}, 0.05 \mathrm{~mol})^{15}$ were stirred for 12 h at $20^{\circ} \mathrm{C}$. Silver bromide was filtered off and washed with hot acetonitrile (20 ml). Solvent was evaporated from the combined filtrate ($15 \mathrm{mmHg} ; 40^{\circ} \mathrm{C}$) to give the sulphonium ${ }^{16}$ salt, which crystallised from acetone-ether. 4-Bromophenacyl-, 3-nitrophenacyl-, and 4-methoxyphenacyl-sulphonium salts were prepared similarly (Table 3).
${ }^{15}$ (a) R. M. Acheson and D. R. Harrison, J. Chem. Soc. (C), 1970, 1764; (b) T. E. Young and R. A. Lazarus, J. Org. Chem., 1968, 33, 3770.
${ }^{16}$ Methylphenacylphenylsulphonium bromide and tetrafluoroborate salts are already known; see (a) von F. Krollpfeiffer, H. Hartmann, and F. Schmidt, Annalen, 1949, 563, 15; (b) K. W. Ratts, J. Org. Chem., 1972, 37, 848.

Table 1
Furans (14)

						\%						a
		Yield			$\underbrace{\text { und }}$		Mol.		$\underbrace{\text { quired }}$	(\%)		yl
Ar	Crystal form	(\%)	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	${ }^{\text {C }}$	H	Other	formula	C	H	Other	$\nu_{\text {max }}$ (CO)	ether)
Ph	Yellow needles	87	112-113	87.1	5.3		$\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{O}_{2}$	87.3	5.2		1645 ± 2	$\begin{aligned} & 1212(\mathrm{~A}), \\ & 1016 \mathrm{~s} \end{aligned}$
$p-\mathrm{BrPh}$	Yellow needles	85	166-168	73.6	4.4	$15.9(\mathrm{Br})$	$\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{BrO}_{2}$	73.7	4.2	15.8(Br)	1650 ± 2	$\begin{aligned} & 1211(\mathrm{~A}), \\ & 1010 \mathrm{~s} \end{aligned}$
$m-\mathrm{NO}_{2} \mathrm{Ph}$	Yellow prisms	73	170-172	79.0	4.7	3.0 (N)	$\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{NO}_{4}$	79.0	4.5	$3.0(\mathrm{~N})$	1655 ± 2	$\begin{aligned} & 1207(\mathrm{~A}), \\ & 1085 \mathrm{~s}^{b} \end{aligned}$

${ }^{a} \mathrm{KBr}$ disc ; $\mathrm{cm}^{-1} .{ }^{b} \mathrm{NO}_{2} 1525$ and $1347 \mathrm{~cm}^{-1}$.

Table 2
U.v. maxima for furans and substituted acrylophenones ($\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{C}=\mathrm{CH}-\mathrm{COAr}$)

R^{1}	R^{2}	Ar	$\lambda / \mathrm{nm}(\varepsilon)$	$\lambda / \mathrm{nm}(\varepsilon)$	$\lambda / \mathrm{nm}(\varepsilon)$
Ph	H	Ph	$228{ }^{\text {a }}$ (9800)		$308^{\text {a }}$ (24 300)
Ph	Ph	Ph	$231{ }^{\text {a }}$ (16 100)	$250{ }^{\text {a }}$ (13 500)	$298{ }^{\text {a }}$ (10500)
2-Furyl	H	Ph		$260{ }^{\text {b }}$ (8872)	$340^{\text {b }}$ (29480)
		Ph	225 (21000)	273 sh (26 200)	382 (6600)
2-(3,5-Diphenyl)furyl	Ph	$p-\mathrm{BrC}_{6} \mathrm{H}_{4}$	226 (27 200)	275sh (31 200)	392 (8300)
		$m-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	226 (25 500)	262 sh (29000)	377 (7400)

${ }^{a}$ Taken from D. S. Noyce and M. J. Jorgenson, J. Amer. Chem. Soc., 1962, 84, 4312. b Taken from V. F. Lavrushin, S. V. Tsukerman, and A. I. Artemenko, J. Gen. Chem. (U.S.S.R.), 1962, 32, 2516 (Zhur. obshchei Khim., 1962, 32, 2551).

Table 3
Phenacylpyridinium perchlorates [cf. (6)]

$c f$. (6)		Crystal form	Yield (\%)	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	Found (\%)			Mol. formula	Calc. (\%)			N.m.r. ${ }^{\text {a }}$		$\begin{gathered} \text { I.r. }{ }^{b} \\ \nu_{\text {max. }}(\mathrm{CO}) \end{gathered}$		
R	$\xrightarrow{\text { Ar }}$				C	${ }_{\mathrm{H}}$	N		C	${ }_{\mathrm{H}}$	N	(s)	$\begin{aligned} & \mathrm{Ar} \\ & (\mathrm{~m}) \end{aligned}$			
H	Ph		Needles	75.	184-185	52.5	4.3		4.7	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{ClNO}_{5}$	52.4	4.0	4.7	6.39	$\begin{gathered} 7.46- \\ 8.84 \end{gathered}$	1700 ± 2
H	$p-\mathrm{BrC}_{6} \mathrm{H}_{4}$	Needles	82	227-228	41.4	3.1	3.7	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrClNO}_{5}$	41.4	2.9	3.7	6.48	$\begin{gathered} 7.71- \\ 8.93 \end{gathered}$	1695 ± 2		
H	$m-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}{ }^{c}$	Prisms	80	187-189	45.1	3.3	8.5	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}_{7}$	45.5	3.2	8.2	6.68	$\begin{gathered} 7.76- \\ 9.0 \end{gathered}$	1695 ± 2		
3-Me	Ph	Needles	75	164-166	53.8	4.6	4.5	$\mathrm{C}_{14} \mathrm{HH}_{14} \mathrm{ClNO}_{5}$	53.9	4.5	4.5	6.45	$\begin{array}{r} 7.50 \\ 8.64 \end{array}$	1710 ± 2		

- 60 MHz ; solvent $\mathrm{CF}_{\mathrm{a}} \cdot \mathrm{CO}_{2} \mathrm{H}$; δ values from internal $\mathrm{Me}_{4} \mathrm{Si}$. ${ }^{6} \mathrm{KBr}$ disc; cm^{-1}. ${ }^{c}$ Bromide salt obtained as prisms from ethanol, m.p. $242-244^{\circ}$ (decomp.) (Found: $\mathrm{C}, 48.1 ; \mathrm{H}, 3.6 ; \mathrm{N}, 8.7 . \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 48.3 ; \mathrm{H}, 3.4 ; \mathrm{N}, 8.7 \%$. \quad d $3-\mathrm{CH}$: 2.67(s).

Table 4
Methylphenacylphenylsulphonium perchlorates [cf. (10)]

$\begin{gathered} \mathrm{Ar} \\ {[c f .(10)]} \end{gathered}$	Crystal form	Yield (\%)	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	Found (\%)			Calc. (\%)		N.m.r. ${ }^{\text {a }}$			$\underset{\nu_{\max }(\mathrm{CO})}{\text { I.r. }{ }^{b}}$
									CH_{3}	CH_{2}	Ar	
				C	H	Mol. formula		H	(s)	(s)	(m)	
Ph	Needles	88	143-145	52.5	4.8	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClO}_{5} \mathrm{~S}^{\text {e }}$	52.5	4.4	3.40	5.56	$7.51-8.20$	1680 ± 2
$p-\mathrm{BrC}_{6} \mathrm{H}_{4}$	Plates	86	175-177	42.3	3.5	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrClO}_{5} \mathrm{~S}$	42.7	3.3	3.43	5.54	7.58-8.17	1685 ± 2
$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	Plates	85	142-143	51.5	4.7	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClO}_{6} \mathrm{~S}$	51.5	4.6	3.42	$5.20{ }^{\text {d }}$	6.98-8.13	1660 ± 2
$m-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ e	Needles	82	139-140	46.0	3.8	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClNO}_{7} \mathrm{~S}$	46.4	3.6	3.51	5.71	7.7-8.8	1693 ± 2^{f}
$\begin{gathered} \bullet 60 \mathrm{M} \mathrm{~Hz} \\ 3.93(\mathrm{~s}) \text { e Fou } \end{gathered}$	$\begin{aligned} & \text { lvent } \mathrm{Cl} \\ & \text { d }: ~ \mathrm{~N}, \mathrm{3} \end{aligned}$	$\begin{aligned} & \mathrm{CO}_{2} \mathrm{H} \\ & \text { Calc. } \end{aligned}$	$\begin{aligned} & \text {; values } \\ & 3.6 \%) . \quad f \end{aligned}$	orn	21.	KBr disc; cm $1351 \mathrm{~cm}^{-1}$.	${ }^{\text {c }}$ F	ro	e sa	nown	ee ref. 16).	${ }^{4} \mathrm{p}-\mathrm{CH}_{3} \mathrm{O}$:

Table 5
N-Phenylpyridinium salts (7)

R	Ar	Crystal form	Yield (\%)	Found (\%)					Calc. (\%)			N.m.r. ${ }^{\text {a }}$		$\begin{gathered} \text { I.r. }{ }^{b} \\ \nu_{\max .}(\mathrm{CO}) \end{gathered}$
				M.p. $\left({ }^{\circ} \mathrm{C}\right)$	C	${ }_{\mathrm{H}}$	N	Mol. formula	C	H^{\prime}	N	5H (s)	ArH (m)	
H	Ph	Plates	40	170-172	72.7	4.8	2.6	$\mathrm{C}_{36} \mathrm{H}_{26} \mathrm{ClNO}_{5}$	73.5	4.4	2.4	7.91	6.97-	1671 ± 2
H	$p-\mathrm{BrC}_{6} \mathrm{H}_{4}$	Plates	35	242-244	64.2	4.0	2.1	$\mathrm{C}_{36} \mathrm{H}_{25} \mathrm{BrClNO}_{5}$	64.9	3.8	2.3	± 0.02 7.91	8.76 7.09	1671 ± 2
												± 0.02	8.82	
3-Me	Ph	Needles	52	178-180	73.5	4.8	2.2	$\mathrm{C}_{37} \mathrm{H}_{28} \mathrm{ClNO}_{5}$	73.8	4.7	2.3	$\begin{array}{r} 7.91 \\ \pm 0.02 \end{array}$	$\begin{array}{r} 7.10 \\ 8.45 \end{array}$	1668 ± 2
		MHz	ven	$\mathrm{F}_{3} \cdot \mathrm{CO}_{2} \mathrm{H}$	δ val	fr	M	- KBr disc ;	m^{-1}.	3-1	: 2			

1-Phenacylpyridinium Perchlorate.-Pyridine ($7.9 \mathrm{~g}, 0.1$ mol), ethanol (50 ml), and phenacyl bromide ($19.9 \mathrm{~g}, 0.1$ mol) were heated under reflux for 2 h . Ether was added to the cooled mixture. The intermediate bromide separated and was dissolved in the minimum of water, and saturated sodium perchlorate was added. The perchlorate which separated was recrystallised from acetone-ether. 1-Phen-acyl-3- and -4-methylpyridinium perchlorates and 1-(4-bromophenacyl)-, and 1-(3-nitrophenacyl)-pyridinium perchlorates were prepared similarly (Table 4).

Preparation of Ylides.-Crude quaternary bromides were converted into the corresponding ylides by treating their aqueous solutions with aqueous 10% sodium carbonate. The ylide was extracted with chloroform; filtration through anhydrous sodium carbonate and evaporation gave the crude ylide which was dried at 0.2 mmHg and $25{ }^{\circ} \mathrm{C}$ for 1 h before use. Perchlorates were converted into ylides by using chloroform and shaking until all the solid dissolved.
Substituted Diphenylfurans.-2,4,6-Triphenylpyrylium perchlorate $(4.08 \mathrm{~g}, 0.01 \mathrm{~mol})$, the sulphonium ylide $(0.02$
mol), and chloroform (175 ml) were heated under reflux for 3 h . After cooling, the resulting crystalline solid (methylphenacylphenylsulphonium perchlorate), (3.2 g) was filtered off and the filtrate evaporated. The residual red oil was extracted with light petroleum (evaporation of the extract yielded methyl phenyl sulphide). The yellow furans insoluble in light petroleum were crystallised from benzenelight petroleum (b.p. $40-60^{\circ}$) (Table 1).

1-(3-Benzoyl-2,4,6-triphenyl)phenylpyridinium Perchlor-ates.-The pyridinium ylide $(0.006 \mathrm{~mol})$, chloroform $(40 \mathrm{ml})$, and 2,4,6-triphenylpyrylium perchlorate (1.225 g , 0.003 mol) were heated under reflux for 3 h . The mixture was cooled and the separated solid collected. Several recrystallisations from acetone-ether gave the products (Table 5).

We thank Dr. M. Sammes for comments and the S.R.C. and the British Council for Postdoctoral Fellowships (to S. Q. A. R. and J. S., respectively).
[5/874 Received, 9th May, 1975]

[^0]: \dagger In our preliminary communication ${ }^{1}$ we incorrectly referred to an X-ray study of compound (14a).
 ${ }^{1}$ Part XLIX, A. R. Katritzky, S. Q. A. Rizvi, and J. W. Suwinski, Heterocycles, 1975, 3, 379.
 ${ }^{2}$ A. Baeyer, Ber., 1910, 43, 2337.
 ${ }^{3}$ A. Baeyer and J. Piccard, Annalen, 1911, 384, 208.
 4 K. Dimroth, Angew. Chem., 1960, 72, 331.
 ${ }^{5}$ (a) W. Schneider and F. Seebach, Ber., 1921, 54, 2285; (b) W. Schneider, Annalen, 1924, 438, 115; (c) W. Schneider and W. Müller, Annalen, 1924, 438, 147; (d) H. C. van der Plas, 'Ring Transformations of Heterocycles,' Academic Press, London, 1973, ch. 4, p. 17; (e) W. Schneider and W. Riedel, Ber., 1941, '74, 1252.

[^1]: ${ }^{6}$ A. T. Balaban and C. D. Nenitzescu, Annalen, 1959, 625, 74.
 ${ }^{7}$ (a) K. Dimroth and G. Bräuninger, Angew. Chem., 1956, 68, 519; (b) K. Dimroth, G. Bräuninger, and G. Neubauer, Chem. Ber., 1957, 90, 1634; (c) K. Dimroth, G. Neubauer, H. Möllenkamp, and G. Oosterloo, ibid., p. 1668.
 ${ }_{8}$ K. Dimroth and G. Neubauer, Chem. Ber., 1959, 92, 2042.
 ${ }^{9}$ K. Dimroth, Angew. Chem., 1962, 74, 660.
 ${ }^{10}$ K. Dimroth and G. Neubauer, Angew. Chem., 1957, 69, 720; Chem. Ber., 1959, 92, 2046.
 ${ }_{11}$ G. Märkl, Angero. Chem., 1962, 174, 696.
 ${ }_{12}$ R. L. Harlow and S. H. Simonsen, Cryst. Struct. Comm., 1975, 4, 311 .

